Another libdepixelize update

Evil patterns

I’ve invested some effort to improve libdepixelize response to evil patterns. Because libdepixelize won’t discard color information, the connections of the similarity graph aren’t a transitivity relation and extra topological patterns can happen. I refer to the extra patterns as evil patterns. The name comes from the fact that I enjoy to play Zelda and defeat the evil from the Hyrule land. Same happened in the last libdepixelize’s commits, where I overcame some patterns to improve the output quality. Quality can be something subjective sometimes, then I was a little conservative and limited my changes to things that I could reason about. The effort end up in new samples to the libdepixelize documentation, new rules for the algorithm and its related documentation and lines of code in libdepixelize itself.

The new rules are added as an extra step on the process. They are not treated like the Kopf-Lischinski’s heuristics to resolve crossing connections. I think maybe would be possible to get some of the new rules and describe versions that are more general and can be added to the “container” that holds the old heuristics. To make this happen, I’d need to define the concept of “similar color” as a set and operations on top of the set, the notion of interval and other things and logical reasoning on top of all that. A bit of mathematical work to improve the quality a little more, but I wanna to investigate the use of La*b* colors (an old suggestion by Nathan) to replace the current concept of “similar colors”. I didn’t replaced the current space color until now, because YUV and La*b* behave differently and I couldn’t just convert the YUV constants that define the boundary between dissimilar colors to La*b* to achieve better results. The current YUV constants were taken from HQx filter and I need to define a methodology to find new constants.

The advantage of a rule that is more general and unifies behaviour is just the beauty of a simpler rule that handles the real problem, as opposed to several branches that are consequence of the real problem. It’d abstract the nature of the problem better. It’d make the code simpler. It’d handle more branches. Being a single rule that affect more branches, it’d be easier to test and better at convincing me that the improvement is real and there will be no loss of quality in other images.

It’d be interesting to investigate the range of voting in all heuristics and try to come up with “fair” multipliers/strength.

New idea to represent splines

Previously I used a technique to carefully insert new nodes to obey the technique “adjust splines” from the Kopf-Lischinski paper while being limited by the old splines representation. This technique has caused troubles to several later steps.

The first problem was to remove the extra invisible nodes that are present in the output SVG. These extra node not only make the output larger and make rendering consume more CPU time, but also can be troublesome for artists wanting to manurally edit the generated image. I’ve made several unsuccessful attempts to remove these nodes and I’m sure it’s possible, but I’ll try to move away from this problem trying a completely different approach to the problem.

The second problem is similar, in essence, to the first one, described in the paragraph above. When I originally disabled the optimization step in the Inkscape GUI and marked it as experimental, one of the reasons was because it required “extra preprocessing steps” (it was a pretty vague explanation, but I should try to improve my communication skills). With no extra invisible points, the optimization step will be way simpler. The step related to optimization that avoid overlapping shapes and holes will partly go away and the approach I mentioned previously (“A new idea to keep the shape of optimized splines correct“) will be affected.

The idea is to split splines. I was previously using a list of points. The new idea is to use a list of splines, where spline itself is a list of points. I hope that the new representation will allow a representation closer to “arbitrary”, just enough to apply the operation “adjust splines”. The new representation should do without extra points and easy the last processing steps (in terms of processing power and my productivity). Of course this change requires a lot of refactoring and will take a bit of time to be finished. Also, the “hope” word used previously means that I haven’t thought about all implications and I’m sharing this idea very early. I’m trying to improve my communication skills and this means that you’ll see some “flood” on this blog. The “flood” might include ideas that eventually prove to be bad at a later point and doesn’t hit the libdepixelize code.

Beta testers

After I shared some images on Google+ related to libdepixelize improvements, some people demonstrated interest in helping me with beta testing.

First, the software is free software, then anyone can use it (even the development versions). So, if you find a crash or something that obviously is a bug, fill a bug report and I’ll fix it.

Second, I still want to improve the quality of the algorithm, then a good pixel art database can help me a lot. Currently the algorithm behaves bad at images with too many gradients, but this doesn’t mean that a lot of images with gradients will help me to improve the quality of the algorithm. I need to publish a page explaining what kind of image can help me to improve the quality of the algorithm.

Third, you can help me with profiling info to improve the performance of the algorithm. I’ll probably send a message to the Inkscape mailing list with the title “request for beta testers/profiling data on libdepixelize”. I’ll probably (re-)share the message through Google+, this blog and maybe more. If you follow any of  these communication channels, you’ll know when I need help.

Thanks for the support.

New logo

The project doesn’t have a logo and uses an ugly icon in the Inkscape GUI dialog. I was thinking about use the character introduced by Jabier on the Inkscape mailing list to represent libdepixelize project:

boof

This image already is highlighted on the algorithmic documentation report anyway and is unique enough.

Timesharing

I’ll have a test at the end of the week and later I’ll share more of my time to play with POWER and LLVM. Then libdepixelize will have to wait a little until I can do more commits.

Target

I’m aiming to deliver all the improvements related to the original Kopf-Lischinski algorithm before Inkscape 0.91. Later I’ll try to improve performance. “Beyond Kopf-Lischinski” extensions have no timeline and depend on creativity.

Tags:,

Comentários (with MarkDown support)

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: